

Keynote Presentation

Big Data:
Powering Digital
Transformation
in Aviation

Big Data:

Isn't it Dead?

Big Data, 3+V's

Volume: The sheer amount of data being generated.

Velocity: The speed at which data is generated

and processed.

Variety: The diverse formats and types of data

(structured, unstructured, etc.).

Given this definition, Big Data is alive. However, it underwent a transformation

Volume: Expensive trend: "collect and think later". Drove cost and complexity in processing.

Velocity: A lack of differentiation between data and information.

Variety: Underestimated efforts on data transformation (ETL ...) to adapt to existing

algorithms and frameworks.

Learning. (i) Processing data is not for free, (ii) storage is not for free \rightarrow business case killer.

Paradigm Changes

Paradigm Change 1

Output first, collection second.

Paradigm Change 2 Self generated data >> input data.

Paradigm Change 3

IT Security (end2end)

Big Data Hype Contribution

- Sophisticated and robust tool chain.
- Examples
- Single turn (45min): 3.5GB of video streams, 70 events / key attributes describing the turn. At 1000 movements a day this leads to 3.5TB.
- EQ Lights: 20.000 assets per airport, 1 message per second per asset each at 1kb Yearly 63TB.
- Maybe not "big data" for the known hyperscalers, but still challenging for many installations.

The New Challenges (In Aviation)

inter airport

Collaboration & Probabilistic Values (AI, ML, CV)

- Collaboration: became a mantra, but moving slow
- Reasons
 - Technically: The diverse formats and types of data (structured, unstructured, etc.).
 - Operationally: Siloed areas of responsibilities, even different organizations
 - Commercially: contractual / competition issue, thin business cases, beneficiary different from investor.
- → High Impact use cases require collaboration

Use Cases

Predictive Maintenance

Remote Marshalling

Dynamic Holding Pos

Incursion Detection

Crossing Monitoring

AIRSIDE4.0° The Airside Ecosystem

Airfield Power

Constant Current Regulators, Advanced Power Supply (APS) and Switchgear Regulator Systems (SGRS) Power Solutions

Airfield Lighting

Intelligent Airfield Lighting, Guidance Signs and Approach Systems

Weather

Automated Weather **Observation System** (AWOS)

ALCMS

Airfield Lighting Control & Monitoring System

ILCMS

Individual Light Control & Mon

A-VDGS

Advanced Visual Docking **Guidance Systems**

Apron Lighting

High Mast LED Apron Lighting

Apron Management

High Mast LED Apron Lighting

AODB

Airport Operational Database

Airline Message Gateway

Airport Airline Collaboration

FIDS

Flight Information Displays

RMS

Resource Management System

Tower ICWP

Integrated Controller Working Position (ICWP)

Data Fusion

A-SMGCS data fusion

Cortex Cloud

Internet of Things (IoT) Data Ingestion, Processing and **Analytics**

Cortex Applications

On-prem to cloud transition and split

Strong Value Chain

From Device to Collaborative Use Cases

3 Challenges

- * Upwards Compatible Technology
- * Change Management
- * Regulatory Dependencies

Smart

Generate Raw Data

DEVICE

Hardware & Software

Interface between the physical asset and the server

Descriptive

- What is happening now
- Data mining
- Real-time dashboard

CONNECTIVITY

"Gateway"

Device connection to the internet and transfer data based on IoT

Diagnostic

- What is happening & why
- Analytics dashboard

CLOUD

Ingestion & Processing

Secured internet-based data centers

Predictive

- What might happen
- Forecast based on past patterns

APPLICATIONS

End User Interface

Applications running within the cloud platform or on-premise systems

Prescriptive

- What actions to take
- Rules & recommendations for next steps?

COLLABORATION

Cohesive Airside Ops.

System integrations and data analysis

PHASE 1 | COMMERCIALIZED

PHASE 2 | STRATEGIC ROADMAP

Big Data & Collaborative Use Case

Harsher Weather Conditions Meeting Leaner Operations

Weather conditions became harsher, disrupting Airside operations [2, 3]

- Strong impact on US: (Snow) storm NY, Hurricanes Naples, ...
- Int. 18% more hail and heavy rain '23 vs '22. 41% more ATFM delays '24 vs. '23 [4]
- ACI survey: 70% [participants] pointed out the impact of adverse weather events [5]
- $\stackrel{1}{\smile}$... resulting in
 - reduced airside access and mobility, increased # IROPS situations
 - Impact to airline networks leading to general disruption and unpredictability at airports
 - Airports' safety services ... if more exposed to unforeseen weather conditions [3]
 - At the same time, we target **Lean Airside Operations** and suffer from **Shortage in Staff**
 - · Limiting redundancy in staff and equipment
 - ... risking growth [1]
 - Increasing # IROPS situations
 - ... and demand to efficiently deal with the unknown

A (i) throughput / economic, (ii) safety and (iii) customer experience challenge **driving Airside automation**.

[1] EUROCONTROL FORECAST UPDATE 2024-2030. [2] Climate Change 2021 The Physical Science Basis. [3] EASA.europe.eu Managing the impact of climate change on aviation. [4] The Weather Company. [5] ACI - CLIMATE CHANGE RESILIENCE AND ADAPTATION SURVEY REPORT. [6] https://airportimprovement.com/

Use Case: JFK's Airport Integration T1 (NTO)

Goals

- * 30% faster recovery from IROPS
- * Improved apron capacity in peak hours (and bad weather)
- * Seamless integration of systems from runway to terminal

Virtual (APRON) Tower

ITOCC - Integrated Term. Operations Control Center for Terminal and Airside

AiPRON Suite + Computer Vision + ML

ICWP - DMAN, Flight Strips, A-SMGCS L4, FtG, SDF++

ADAL – Dynamic Holding Positions, Lead In Lights

Service Road Warning Lights (virtual wing walker

Airside Self Kiosk to mitigate congested ground frq

Floodlight Dimming based on situational context

Airsid Integration

A-VDGS + IoT - Ground Equipment Integration

PANYNJ (End user), NTO (DBO): Ferrovial, Carlyle, Tishman (maincon), Faith Group (engineer of record), ADB SAFEGATE: Searidge (Virtual Tower), Leonardo, Aero Group, MUSCO, MSIA (Master system integration alliance): ADB SAFEGATE, SITA, Schneider

From Big Data to Al

Overhyping Technology without Clear ROI

"Over 40% of agentic AI projects will be canceled by the end of 2027, due to escalating costs, unclear business value or inadequate risk controls", Gartner, 06.2025

Data Ownership, **Monetizing Data**

Data Quality Neglect

Underestimating Scalability and Infrastructure Challenges

Ignore Ethical Concerns

"The ethics of artificial intelligence: Issues and initiatives", EU Parliament

Lack of Domain **Expertise Integration**

Vendor Lock-In and **Tool Proliferation**

Neglect Need to Upskill

Focusing on Technology over Change Management

"Change management in the gen AI age asks employees to become active participants rather than just users". McKinsey

Failure to measure success

Thank you for your attention

Dr. Thorben Burghardt, CTO